lunes, 19 de noviembre de 2012

Capitulo 29 MAGNETISMO Y CAMPO MAGNETICO.




Objetivos
Cuando termine de estudiar este capítulo el alumno:
1. Demostrará, mediante definiciones y ejemplos, su comprensión acerca de estos temas: magnetismo, inducción, retentividad, saturación y permeabilidad.
2. Escribirá y aplicará una ecuación que permita relacionar la fuerza magnética sobre una carga en movimiento, con su velocidad, su carga y su dirección, en un campo conocido de densidad de flujo magnético.
3. Determinará la fuerza magnética sobre un alambre conductor de corriente colocado en un campo conocido B.
4. Calculará la densidad de flujo magnético (a) a una distancia conocida del alambre conductor de la corriente, (b) en el centro de una espira de corriente o bobina y (c) en el interior de un solenoide.
En capítulos anteriores hemos visto que las cargas eléctricas ejercen fuerzas entre sí. En este capítulo se estudiarán las fuerzas magnéticas. Una fuerza magnética se puede originar por la presencia de cargas eléctricas en movimiento, y una fuerza eléctrica se puede generar a causa de un campo magnético en movimiento. El funcionamiento de motores eléctricos, generadores, transformadores, interruptores, televisores, receptores de radio y la mayoría de los medidores eléctricos depende de la relación entre fuerzas eléctricas y magnéticas. Iniciaremos este capítulo estudiando los efectos magnéticos asociados con los materiales y terminaremos analizando los efectos magnéticos producidos por las cargas en movimiento.


29.1 MAGNETISMO.
Los primeros fenómenos magnéticos observados se relacionaron con fragmentos de piedra de imán o magnetita (un óxido de hierro) encontrada cerca de la antigua ciudad de Magnesia hace aproximadamente 2000 años. Se observó que estos imanes naturales atraían pequeños trozos de hierro no magnetizado. Esta fuerza de atracción se conoce como magnetismo, y al objeto que ejerce una fuerza magnética se le llama imán.
Si una barra imantada se introduce en un recipiente que contenga limaduras de hierro y enseguida se retira, se aprecia que los minúsculos fragmentos de hierro se adhieren más fuer­
Si una barra imantada se introduce en un recipiente que contenga limaduras de hierro y enseguida se retira, se aprecia que los minúsculos fragmentos de hierro se adhieren más fuertemente a las áreas pequeñas cercanas a los extremos. Estas regiones donde parece concentrarse la fuerza del imán se llaman polos magnéticos. A las áreas pequeñas cercanas a los extremos. Estas regiones donde parece concentrarse la fuerza del imán se llaman polos magnéticos.

Cuando cualquier material magnético se suspende de un cordel, gira alrededor de un eje vertical. El extremo que apunta hacia el Norte se llama el polo norte (N) del imán. Su opuesto, el extremo que ve al sur se llama polo sur (S) del imán. La polarización del material magnético es lo que cuenta para su aprovechamiento como brújula para la navegación. La brújula consiste en una aguja ligera imantada que se apoya sobre un soporte con poca fricción.
Se puede demostrar fácilmente que los polos norte y sur del imán son diferentes. Cuando  se acerca al imán suspendido por la cuerda otra barra imantada, los dos polos norte o los dos polos sur se repelen entre sí, mientras que el polo norte de uno y el polo sur de otro se atraen mutuamente.
La ley de la fuerza magnética establece que:

Polos magnéticos iguales se repelen y polos magnéticos diferentes se atraen.

No existen polos aislados. No importa cuántas veces se rompa un imán por la mitad, cada pieza resultante será un imán, con un polo norte y un polo sur. No se conoce una sola partícula que sea capaz de crear un campo magnético de manera similar a como un protón o electrón crean un campo eléctrico.

La atracción que ejercen los imanes sobre el hierro no magnetizado y las fuerzas de interacción que surgen entre los polos magnéticos actúan a través de todas las sustancias. En la industria, los materiales ferrosos que han sido desechados y se arrojan a la basura pueden separarse para reutilizarlos por medio de imanes.

29.2 CAMPOS MAGNETICOS

Todo imán está rodeado por un espacio, en el cual se manifiestan sus efectos magnéticos. Dichas regiones se llaman campos magnéticos. Así como las líneas del campo eléctrico fueron útiles para describir los campos eléctricos, las líneas de campo magnético, llamadas líneas de flujo, son muy útiles para visualizar los campos magnéticos. La dirección de una línea de flujo en cualquier punto tiene la misma dirección de la fuerza magnética que actuaría sobre un polo norte imaginario aislado y colocado en ese punto. De acuerdo con esto, las líneas de flujo magnético salen del polo norte de un imán y entran en el polo sur. A diferencia de las líneas de campo eléctrico, las líneas de flujo magnético no tienen puntos iniciales o finales; forman espiras continuas que pasan a través de la barra metálica. Las líneas de flujo en la región comprendida entre dos polos iguales o diferentes.

29.3 LA TEORIA MODERNA DEL MAGNETISMO.

En general se acepta que el magnetismo de la materia es el resultado del movimiento de los electrones en los átomos de las sustancias. De ser así, el magnetismo es una propiedad de la carga en movimiento y está estrechamente relacionado con el fenómeno eléctrico. De acuerdo con la teoría clásica, los átomos individuales de una sustancia magnética son, en efecto, diminutos imanes con polos norte y sur. La polaridad magnética de los átomos se basa principalmente en el espín de los electrones y se debe, lo en parte, a sus movimientos orbitales alrededor del núcleo. La figura 29.6 ilustra los dos tipos de movimiento de los electrones. No deben tomarse muy en serio los diagramas de este tipo, ya que aún se ignoran muchos aspectos relacionados con el movimiento de los electrones. No obstante, creemos firmemente que los campos magnéticos de todas las partículas deben ser causados por cargas en movimiento, y tales modelos nos ayudan a describir tales fenómenos.

Los átomos en un material magnético están agrupados en microscópicas regiones magnéticas conocidas como dominios. Se piensa que todos los átomos dentro de un dominio están polarizados magnéticamente a lo largo de un eje cristalino. En un material no magnetizado, estos dominios se orientan en direcciones al azar. Se usa un punto para indicar que una flecha está dirigida hacia afuera del papel, y una cruz indica una dirección hacia adentro del papel. Si un gran número de dominios se orientan en la misma dirección, el material mostrará fuertes propiedades magnéticas.
Esta teoría del magnetismo es muy útil porque ofrece una explicación para gran número de los efectos magnéticos observados en la materia. Por ejemplo, una barra de hierro no magnetizada se puede transformar en un imán simplemente sosteniendo otro imán cerca de ella o en contacto con ella. Este proceso, es  llamado inducción magnética. Las tachuelas se convierten, por inducción, en imanes temporalmente. La inducción magnética se explica por medio de la teoría del dominio.
La introducción de un campo magnético provoca la alineación de los dominios, Y eso da por resultado la magnetización.
El magnetismo inducido es, a menudo, sólo temporal, y cuando se retira el campo, los  dominios gradualmente se vuelven a desorientar. Si los dominios permanecen alineados en cierto grado después de que el campo se ha eliminado, se dice que el material está permanentemente magnetizado. La capacidad de retener el magnetismo se conoce como retentividad.
Otra propiedad de los materiales magnéticos que se explica fácilmente a la luz de la teoría del dominio es la saturación magnética. Tal parece que existe un límite para el grado  de magnetización que experimenta un material.
Una vez que se ha alcanzado dicho límite, ningún campo externo, por fuerte que sea, puede incrementar la magnetización. Se piensa que todos sus dominios ya se han alineado.


29. Campo magnético y corriente eléctrica.
Aunque la teoría moderna del magnetismo sostiene que un campo magnético resulta del movimiento de cargas, la ciencia no siempre ha aceptado esta idea. Es demasiado fácil demostrar que un poderoso imán no ejerce ninguna fuerza sobre la carga estática. E el transcurso de una demostración, en 1820, Hans Oersted presentó un experimento para que sus estudiantes observaran que las cargas en movimiento y los imanes tampoco interactuaban. Colocó la aguja magnética de una brújula cerca de un conductor, como se aprecia e la figura 29.12. Para su sorpresa, cuando envió la corriente a través del alambre, una fuerza giratoria actuó sobre la aguja de la brújula hasta que ésta apuntó en una dirección perpendicular al alambre. Más aún, la magnitud  de la fuerza dependía de la orientación relativa  de la aguja de la brújula y la dirección de la corriente. La máxima fuerza del giro se presentó cuando el alambre y la aguja estaban en posición  paralela entes de que circulara la corriente. Si inicialmente estaba en posición perpendicular, no se experimentaba ninguna fuerza. Evidentemente, se establece un campo magnético debido a la carga en movimiento a través del conductor.
En el mismo año que Oersted hizo su descubrimiento, Ampére encontró que existen fuerzas entre dos conductores por donde circula una corriente. Dos alambres por los que fluía corriente en la misma dirección se atraían entre sí, mientras que corrientes con direcciones opuestas originaban una fuerza de repulsión. Unos cuantos años después, Faraday descubrió que el movimiento de un imán al acercarse o alejarse de un circuito eléctrico produce una corriente en el circuito. La relación entre los fenómenos eléctricos y magnéticos pueden explicarse en términos de cargas eléctricas en movimiento.

29.4 Densidad de flujo y permeabilidad



En el capítulo 24 se estableció que las líneas de campo eléctrico se dibujan de modo que su espaciamiento en cualquier punto permita determinar la fuerza del campo eléctrico en ese punto (consulte la figura 29.9). El número de líneas ΔN dibujadas a través de la unidad de área ΔA es directamente proporcional a la intensidad del campo eléctrico E.


La constante de proporcionalidad e, que determina el número de líneas dibujadas, es la permisividad del medio a través del cual pasan las líneas.
      Se puede realizar una descripción análoga de un campo magnético considerando al flujo magnético Ф que pasa a través de una unidad de área perpendicular A± . A esta razón B se le llama densidad de flujo magnético.
La densidad de flujo magnético en una región de un campo magnético es el número de líneas de flujo que pasan a través de una unidad de área perpendicular en esa región.
La unidad del flujo magnético en el SI es el weber (Wb). La unidad de densidad de flujo debe ser entonces webers por metro cuadrado, que se redefine como tesla (T). Una antigua unidad que todavía se usa hoy es el gauss (G). En resumen,
 

29.5 Campo magnético y corriente eléctrica



Aunque la teoría moderna del magnetismo sostiene que un campo magnético resulta del movimiento de cargas, la ciencia no siempre ha aceptado esta idea. Es demasiado fácil demostrar que un poderoso imán no ejerce ninguna fuerza sobre la carga estática. En el transcurso de una demostración, en 1820, Hans Oersted presentó un experimento para que sus estudiantes observaran que las cargas en movimiento y los imanes tampoco interactuaban. Colocó la aguja magnética de una brújula cerca de un conductor, como se aprecia en la figura 29.12. Para su sorpresa, cuando envió la corriente a través del alambre, una fuerza giratoria actuó sobre la aguja de la brújula hasta que ésta apuntó en una dirección perpendicular al alambre. Más aún, la magnitud de la fuerza dependía de la orientación relativa de la aguja de la brújula y la dirección de la corriente. La máxima fuerza de giro se presentó cuando el alambre y la aguja estaban en posición paralela antes de que circulara la corriente. Si inicialmente estaban en posición perpendicular, no se experimentaba ninguna fuerza. Evidentemente, se establece un campo magnético debido a la carga en movimiento a través del conductor.
    En el mismo año que Oersted hizo su descubrimiento, Ampére encontró que existen fuerzas entre dos conductores por donde circula una corriente. Dos alambres por los que fluía corriente en la misma dirección se atraían entre sí, mientras que corrientes con direcciones opuestas originaban una fuerza de repulsión. Unos cuantos años después, Faraday descubrió que el movimiento de un imán al acercarse o alejarse de un circuito eléctrico produce una corriente en el circuito. La relación entre los fenómenos eléctricos y magnéticos ya no se puso en duda. Actualmente, todos los fenómenos magnéticos pueden explicarse en términos de cargas eléctricas en movimiento.

29.6 Fuerza sobre una carga en movimiento



Investiguemos los efectos de un campo magnético observando la fuerza magnética ejercida sobre una carga que pasa a través del campo. Para estudiar estos efectos, es útil imaginar un tubo de iones positivos como el de la figura 29.13. Dicho tubo nos permite inyectar un ion positivo de carga y velocidad constantes en un campo de densidad de flujo magnético B. Orientando el tubo en varias direcciones, podemos observar la fuerza ejercida sobre la carga en movimiento. La observación más importante es que dicha carga experimenta una fuerza que es perpendicular tanto a la densidad de flujo magnético B, como a la velocidad v de la carga en movimiento. Observe que cuando el flujo magnético se dirige de izquierda a derecha y la carga se mueve hacia donde está el lector, la carga se desvía hacia arriba. Si se invierte la polaridad de los imanes, se provoca que la carga se desvíe hacia abajo.
     La dirección de la fuerza magnética F sobre una carga positiva en movimiento con una velocidad v en un campo de densidad de flujo B, puede considerarse mediante la regla del tornillo de rosca derecha (véase la figura 29.14):

La regla de la mano derecha: Extienda la mano derecha con los dedos apuntando en la dirección del campo B y el pulgar apuntando en la dirección de la velocidad v de la carga en movimiento. La palma abierta está de cara a la fuerza magnética F sobre una carga positiva.
 
Si la carga en movimiento es negativa, la dirección de la fuerza se determina siguiendo el mismo procedimiento pero usando la mano izquierda. De esta manera la dirección de la fuerza magnética es opuesta a la dirección para una carga positiva.
   Consideremos ahora la magnitud de la fuerza sobre una carga en movimiento. La experimentación ha mostrado que la magnitud de la fuerza magnética es directamente proporcional a la magnitud de la carga q y a su velocidad v. El tubo de ion positivo indicará, por medio de mayores desviaciones, si alguno de estos parámetros aumenta
    Se observará una variación no esperada en la fuerza magnética si el tubo del ion se hace girar lentamente respecto a la densidad de flujo magnético B. Como indica la figura 29.15, para una carga dada con velocidad constante v, la magnitud de la fuerza varía con el ángulo

que forma el tubo con el campo. La desviación de la partícula es máxima cuando la velocidad de la carga es perpendicular al campo. Cuando el tubo se hace girar lentamente hacia B, la desviación de la partícula disminuye gradualmente. Por último, cuando la velocidad de la carga tiene una dirección paralela a B, no ocurre ninguna desviación, lo que indica que la fuerza magnética ha caído hasta cero. Claramente la magnitud de la fuerza es función no sólo de la magnitud de la carga y de su velocidad, sino que también varía con el ángulo θ entre v y B. Esta variación se explica al establecer que la fuerza magnética es proporcional a la componente de
la velocidad, v sen θ, perpendicular a la dirección del campo. (Consulte la figura 29.16.) Las observaciones anteriores se resumen por la proporcionalidad

Si se eligen las unidades apropiadas, la constante de proporcionalidad puede igualarse con la densidad de flujo magnético B del campo causante de la fuerza. En realidad, esta proporcionalidad se usa a menudo para definir la densidad de flujo magnético como una razón constante:
Un campo magnético que tenga una densidad de flujo equivalente a 1 tesla (1 weber por metro cuadrado), ejercerá una fuerza igual a 1 newton sobre una carga de 1 coulomb que se mueva en forma perpendicular al campo, con una velocidad de 1 metro por segundo.

Como consecuencia de la ecuación (29.8), se observa que


Estas relaciones entre unidades son útiles para resolver problemas que incluyan fuerzas magnéticas. Despejando la fuerza F en la ecuación (29.8), obtenemos

que es la forma más útil para calcular directamente las fuerzas magnéticas. La fuerza F está en newtons cuando la carga q se expresa en coulombs, la velocidad v se mide en metros por segundo y la densidad de flujo B se expresa en teslas. El ángulo θ  indica la dirección de v respecto a B. La fuerza F siempre es perpendicular tanto a v como a B. La dirección de estos vectores puede determinarse por medio de la aplicación de la regla de la mano derecha. Cuando se representan vectores tridimensionales gráficamente, resulta útil la convención de utilizar cruces (X) para indicar una dirección hacia el papel. Estos símbolos podrían considerarse el “inicio” de las flechas de vector. Usaremos puntos ( • ) para indicar puntas de flecha de vector que apuntan hacia fuera del papel. En la figura 29.17 se muestran dos ejemplos de este tipo. Para probar su comprensión del tema, verifique que la fuerza sobre la carga positiva es ascendente y la que la fuerza en la carga negativa se dirige hacia la derecha.

Un electrón se proyecta de izquierda a derecha en un campo magnético dirigido verticalmente hacia abajo. La velocidad del electrón es de 2 X 106 m/s, y la densidad de flujo magnético del campo es 0.3 T. Determine la magnitud y la dirección de la fuerza magnética ejercida sobre el electrón.
Pía n: La carga del electrón es 1.6 X 10-19 C, la magnitud de la fuerza sobre el electrón se calcula a partir de la ecuación (29.10) y la dirección se determina al aplicar la regla de la mano izquierda. Se usa la mano izquierda porque la carga de un electrón es negativa.
Solución: El electrón se mueve en una dirección perpendicular a B. Por tanto, sen θ =1 ; resolvemos para la fuerza en la siguiente forma:

La aplicación de la regla de la mano izquierda para un electrón muestra que la dirección de la fuerza es hacia afuera de la página, o hacia el lector. (Para una carga positiva como un protón o una partícula alfa, sería hacia adentro de la página.)
 

29.7 Fuerza sobre un conductor por el que circula una Corriente



Cuando una corriente eléctrica I circula por un conductor que yace en un campo magnético B, cada carga q que fluye a través del conductor experimenta una fuerza magnética F. Estas fuerzas se transmiten al conductor como un todo, originando que cada unidad de longitud experimente una fuerza. Si la cantidad total de carga q pasa a través de la longitud L del alambre
(figura 29.17) con una velocidad media v, podemos escribir

F = qvB
 
La velocidad media para cada carga que recorre la longitud L en el tiempo t es L/t. Entonces,la fuerza neta sobre la longitud completa es

Ahora bien, como I = qlt, reordenamos y simplificamos para obtener
                                  F = ILBG
donde I representa la corriente en el alambre
 


Del mismo modo que la magnitud de la fuerza sobre una carga en movimiento varía según la dirección de la velocidad, así la fuerza F sobre un conductor por el que fluye corriente depende del ángulo θ que forma la corriente respecto al campo B. En general, si un alambre de longitud / forma un ángulo θ con el campo B, como se ilustra en la figura 29.19 dicho alambre experimentará una fuerza F dada en newton por

donde / es la corriente que circula por el alambre expresada en amperes, B es el campo magnético expresado en teslas, L es la longitud del alambre en metros y θ es el ángulo que forma el alambre con respecto al campo B.
   La dirección de la fuerza magnética sobre un conductor a través del cual fluye corriente puede determinarse mediante la regla de la mano derecha, en la misma forma que cuando se trata de una carga en movimiento (ya que una corriente está moviendo la carga). Como muestra la figura 29.19, cuando el pulgar apunta en la dirección de la corriente I y los dedos apuntan en la dirección del campo magnético B. la palma de la mano está de cara a la dirección de la fuerza magnética F. La dirección de la fuerza siempre es perpendicular tanto a I como a B.

 



El alambre de la figura 29.19 forma un ángulo de 30° respecto a un campo B de 0.2 T, cuyo valor es de 0.2 T. Suponiendo que la longitud del alambre sea 8 cm y que pase a través de él una corriente de 4 A, determine la magnitud y la dirección de la fuerza resultante sobre el alambre.
Plan: La magnitud de la fuerza se determina al sustituir directamente en la ecuación (29.11) y la dirección de la fuerza se obtiene al aplicar la regla de la mano derecha.
Solución: La longitud se convierte en metros (L = 8 cm. = 0.08 m).

La aplicación de la regla de la mano derecha muestra que la dirección de la fuerza es ascendente. Si la dirección de la corriente se invirtiera, la fuerza sería descendente.

29.8 Campo magnético de un conductor largo y recto



El experimento de Oersted demostró que una carga eléctrica en movimiento, o una corriente, originan un campo magnético en el espacio que la rodea. Hasta ahora hemos estudiado la fuerza que ese tipo de campo ejercerá sobre un segundo conductor por el que circula corriente o sobre una carga en movimiento en el campo. A continuación se empezará a calcular los campos magnéticos producidos por corrientes eléctricas.
    Primero hay que examinar la densidad de flujo que rodea a un conductor largo y recto que transporta una corriente constante. Si se esparcen limaduras de hierro sobre el papel que rodea al conductor, como se aprecia en la figura 29.20, se alinearán en círculos concéntricos

alrededor del conductor. Una investigación similar del área que rodea al conductor con una brújula magnética ratificará que el campo magnético es circular y que está dirigido en el sentido del avance de las manecillas del reloj, como se ve a lo largo de la dirección de la corriente convencional (positiva). Ampére ideó un método conveniente para determinar la dirección del campo que rodea a un conductor recto, que recibió el nombre de regla del pulgar de la mano derecha (consulte la figura 29.20).
Si el conductor se toma con la mano derecha de modo que el pulgar apunte en la dirección de la corriente convencional, los demás dedos que sujetan al conductor indicará la dirección del campo magnético.
La inducción magnética, o densidad de flujo, a una distancia perpendicular el de un conductor largo y recto por el que circula una corriente I, como muestra la figura 29.21, se puede calcular a partir de

donde /x es la permeabilidad del medio que rodea al conductor. En los casos especiales del vacío, el aire y los medios no magnéticos, la permeabilidad µ0 es
Cuando se usa esta constante con la ecuación (29.12), es necesario que la corriente esté en amperes, el campo en teslas y la distancia desde el conductor en metros.


Determine el campo magnético B en el aire a una distancia de 5 cm de un alambre largo por el que circula una corriente de 8 A
.
Plan: La magnitud del campo se calcula a partir de la ecuación (29.12) y la dirección se determina por la regla del pulgar de la mano derecha.
Solución:  

Si el medio que rodea no es el aire o un vacío, se debe considerar que la permeabilidad difiere de µ0

29.9 Otros campos magnéticos



Si un alambre se curva para darle la forma de una espira y sus extremos se conectan a una fuente de comente, como aparece en la figura 29.22a, se establece un campo magnético semejante al de un imán de barra. La regla del pulgar de la mano derecha seguirá siendo muy útil para conocer la dirección del campo de una manera aproximada, pero en este caso las líneas de flujo no serán de forma circular. La densidad de flujo magnético varía considerablemente de un punto a otro.



La inducción magnética en el centro de una espira circular de radio r que transporta una corriente I se calcula por medio de esta expresión:


La dirección B es perpendicular al plano de la espira. Si el alambre forma parte de una bobina con N vueltas, la ecuación (29.13) adopta esta forma:

Un solenoide consiste en un devanado de muchas vueltas de alambre, enrolladas en forma helicoidal, como se muestra en la figura 29.23. La inducción magnética en el interior de

Un solenoide consiste en un devanado de muchas vueltas de alambre, enrolladas en forma helicoidal, como se muestra en la figura 29.23. La inducción magnética en el interior de


Un solenoide se construye devanando 400 vueltas de alambre en un núcleo de hierro de 20 cm. La permeabilidad relativa del hierro es de 13 000. ¿Qué corriente se requiere para producir una inducción magnética de 0.5 T en el centro del solenoide?
Plan: Dado que se nos proporcionó la permeabilidad relativa, necesitamos multiplicar por µ0 para encontrar el valor de µ que usaremos en la ecuación (29.16), lo cual nos permitirá resolver para la corriente I.
Solución: La permeabilidad relativa es 13 000, así que partiendo de la ecuación (29.6), tenemos

Como N = 400 vueltas, L = 0.20 m y B = 0.5 T, resolvemos la ecuación (29.16) para la corriente I.

Un tipo particular de solenoide, llamado toroide, se emplea a menudo para estudiar efectos magnéticos. Como se verá en la siguiente sección, el toroide consta de una bobina de alambre en forma de rosca, devanado en forma muy compacta. La densidad de flujo magnético en el núcleo de un toroide también se calcula por medio de la ecuación (29.16).

29.10 Histéresis



Hemos visto que las líneas de flujo magnético son más numerosas en un solenoide con núcleo de hierro que en un solenoide en aire. La densidad de flujo está relacionada con la permeabilidad µ del material del que está hecho el núcleo del solenoide. Recuerde que la intensidad de campo H y la densidad de flujo B se relacionan entre sí según la ecuación
B = µ H
Al comparar esta relación con la ecuación (29.16) se ve que, para un solenoide,


Observe que la intensidad magnética es independiente de la permeabilidad del núcleo. Es tan sólo función del número de espiras N, de la corriente I y de la longitud del solenoide L. La intensidad magnética se expresa en amperes por metro. Es posible estudiar las propiedades magnéticas de la materia observando la densidad de flujo B producido, ya sea como una función de la corriente magnetizante o bien como función de la intensidad magnética H. Esto se puede hacer con más facilidad cuando a la sustancia se
le da una forma toroidal, como se muestra en la figura 29.24. El campo magnético originado por una corriente en el devanado magnetizante se confina por completo al toroide. A este dispositivo se le llama a menudo anillo de Rowland, en honor a J. H. Rowland, quien lo utilizó para estudiar las propiedades de muchos materiales.

Suponga que empezamos a estudiar las propiedades magnéticas de un material con un anillo de Rowland no magnetizado moldeado con la misma sustancia. Inicialmente, B = 0 y H = 0. El interruptor se cierra, y la corriente magnetizante I aumenta gradualmente, produciendo una intensidad magnética dada por

donde L es la circunferencia del anillo. Puesto que el material está sometido a una intensidad magnética H cada vez mayor, la densidad de flujo B se incrementa hasta que el material se satura. Consulte la curva AB de la figura 29.25. Si ahora la corriente se disminuye en forma gradual hasta cero, la densidad de flujo B a través del núcleo no retorna a cero, sino que retiene cierta intensidad magnética, como se ilustra mediante la curva BC (esto en esencia corresponde al magnetismo residual). La pérdida de la restitución magnética se conoce como histéresis.
Histéresis es el retraso de la magnetización respecto a la intensidad magnética.
La única forma de hacer que la densidad de flujo B dentro del anillo vuelva a cero es invirtiendo la dirección de la corriente a través del devanado. Este procedimiento desarrolla la intensidad magnética H en dirección opuesta, como muestra la curva CD. Si continúa la magnetización para aumentar en dirección negativa, el material al cabo del tiempo se saturará de nuevo con una polaridad invertida. (Consulte la curva DE.) Reduciendo la corriente a cero nuevamente y luego incrementándola en la dirección positiva, se obtiene la curva EFB. A la curva completa se le llama ciclo de histéresis.
    El área encerrada por un ciclo de histéresis es una indicación de la cantidad de energía que se pierde (en forma de calor), sometiendo a un material determinado a un ciclo de magnetización completo. La eficiencia de un gran número de dispositivos electromagnéticos está basada en la selección de materiales magnéticos con baja histéresis. Por otra parte, en el caso de los materiales que se desea mantener bien magnetizados, es necesario que éstos tengan una histéresis elevada.
 




1 comentario: